Bivariate Latent Dual Change Model

My last post demonstrated a dual change model for one variable, now I want to demonstrate a bivariate dual change model. A SEM path diagram for a bivariate dual change model is below, taken from Wang, Zhou, and Zhang (2016)

(If you do not have access to that link you can view a similar path diagram in Jones, King, Gilrane, McCausland, Cortina, & Grimm, 2016)

Essentially, we have two dual change processes and a coupling parameter from the latent true score on one variable to the latent change score on the other.

The DGP

\[\begin{equation} y_t = constant_y + (1 + proportion_y)*y_{t-1} + coupling_{xy}*x_{t-1} + e \end{equation}\]

where \(constant_y\) is the change factor (or latent slope) on \(y\), \(proportion_y\) is the proportion change factor, and \(coupling_xy\) is the coupling parameter relating \(x\) to \(y\). The DGP for \(x\) is

\[\begin{equation} x_t = constant_x + (1 + proportion_x)*x_{t-1} + coupling_{yx}*y_{t-1} + e \end{equation}\]

where the terms are similar but now applied to values of \(x\). The true values used in the DGP are:

\[\begin{align} y_t &= 0.5 + (1 + -0.32)y_{t-1} + 0.4x_{t-1} + e \\ x_t &= 0.5 + (1 + 0.22)x_{t-1} - 0.4y_{t-1} + e \end{align}\]

with initial values for both \(x\) and \(y\) sampled from \(N\) ~ (10, 1).

people <- 700
time <- 6
x_cause_y <- 0.4
y_cause_x <- -0.4

const_x <- 0.5
const_y <- 0.5

prop_x <- 0.22
prop_y <- -0.32

df_mat <- matrix(, ncol = 4, nrow = people*time)
count <- 0

for(i in 1:people){
  
  unob_het_y <- rnorm(1, 0, 3)
  unob_het_x <- rnorm(1, 0, 3)
  
  for(j in 1:time){
    count <- count + 1
    
    if(j == 1){
      df_mat[count, 1] <- i
      df_mat[count, 2] <- j
      df_mat[count, 3] <- rnorm(1, 10, 1)
      df_mat[count, 4] <- rnorm(1, 10, 1)
    }else{
      
      df_mat[count, 1] <- i
      df_mat[count, 2] <- j
      df_mat[count, 3] <- const_x + (1+prop_x)*df_mat[count - 1, 3] + y_cause_x*df_mat[count - 1, 4] + unob_het_x + rnorm(1,0,1)
      df_mat[count, 4] <- const_y + (1+prop_y)*df_mat[count - 1, 4] + x_cause_y*df_mat[count - 1, 3] + unob_het_y + rnorm(1,0,1)
    }
    
  }
  
  
}

library(tidyverse)
library(ggplot2)
library(reshape2)

df <- data.frame(df_mat)
names(df) <- c('id', 'time', 'x', 'y')

Values of \(y\) over time.

random_nums <- sample(c(1:700), 6)
df_sample <- df %>%
  filter(id %in% random_nums)

ggplot(df, aes(x = time, y = y, group = id)) + 
  geom_point(color = 'grey85') + 
  geom_line(color = 'grey85') + 
  geom_point(data = df_sample, aes(x = time, y = y, group = id)) + 
  geom_line(data = df_sample, aes(x = time, y = y, group = id))

Values of \(x\) over time.

plot_single_response <- function(y_axis){
  
  plot_it <- ggplot(df, aes(x = time, y = !!y_axis, group = id)) + 
    geom_point(color = 'grey85') + 
    geom_line(color = 'grey85') + 
    geom_point(data = df_sample, aes(x = time, y = !!y_axis, group = id)) + 
    geom_line(data = df_sample, aes(x = time, y = !!y_axis, group = id))
  
  return(plot_it)
}

plot_single_response(quo(x))

Three randomly selected individuals with \(x\) and \(y\) plotted simultaneously.

three_cases <- df %>%
  filter(id == 4 | id == 500 | id == 322) %>%
  gather(x, y, key = 'variable', value = 'response')

ggplot(three_cases, aes(x = time, y = response, color = variable)) + 
  geom_point() + 
  geom_line() + 
  facet_wrap(~id)

Dual Change Model on Y

df_wide_y <- df %>%
  select(id, time, y) %>%
  reshape(idvar = 'id', timevar = 'time', direction = 'wide')

library(lavaan)

dual_change_y_string <- [1672 chars quoted with ''']

dc_y_model <- sem(dual_change_y_string, data = df_wide_y)
summary(dc_y_model, fit.measures = T)
lavaan 0.6-9 ended normally after 67 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        16
  Number of equality constraints                     9
                                                      
  Number of observations                           700
                                                      
Model Test User Model:
                                                      
  Test statistic                              6082.258
  Degrees of freedom                                20
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                              7974.233
  Degrees of freedom                                15
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.238
  Tucker-Lewis Index (TLI)                       0.429

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -11526.640
  Loglikelihood unrestricted model (H1)      -8485.511
                                                      
  Akaike (AIC)                               23067.280
  Bayesian (BIC)                             23099.138
  Sample-size adjusted Bayesian (BIC)        23076.911

Root Mean Square Error of Approximation:

  RMSEA                                          0.658
  90 Percent confidence interval - lower         0.644
  90 Percent confidence interval - upper         0.672
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           2.366

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  ly1 =~                                              
    y.1               1.000                           
  ly2 =~                                              
    y.2               1.000                           
  ly3 =~                                              
    y.3               1.000                           
  ly4 =~                                              
    y.4               1.000                           
  ly5 =~                                              
    y.5               1.000                           
  ly6 =~                                              
    y.6               1.000                           
  cy2 =~                                              
    ly2               1.000                           
  cy3 =~                                              
    ly3               1.000                           
  cy4 =~                                              
    ly4               1.000                           
  cy5 =~                                              
    ly5               1.000                           
  cy6 =~                                              
    ly6               1.000                           
  l_intercept =~                                      
    ly1               1.000                           
  l_slope =~                                          
    cy2               1.000                           
    cy3               1.000                           
    cy4               1.000                           
    cy5               1.000                           
    cy6               1.000                           

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  ly2 ~                                               
    ly1               1.000                           
  ly3 ~                                               
    ly2               1.000                           
  ly4 ~                                               
    ly3               1.000                           
  ly5 ~                                               
    ly4               1.000                           
  ly6 ~                                               
    ly5               1.000                           
  cy2 ~                                               
    ly1     (prop)    0.367    0.020   18.281    0.000
  cy3 ~                                               
    ly2     (prop)    0.367    0.020   18.281    0.000
  cy4 ~                                               
    ly3     (prop)    0.367    0.020   18.281    0.000
  cy5 ~                                               
    ly4     (prop)    0.367    0.020   18.281    0.000
  cy6 ~                                               
    ly5     (prop)    0.367    0.020   18.281    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  l_intercept ~~                                      
    l_slope          -2.346    0.250   -9.399    0.000
 .cy2 ~~                                              
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
 .cy3 ~~                                              
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
 .cy4 ~~                                              
   .cy5               0.000                           
   .cy6               0.000                           
 .cy5 ~~                                              
   .cy6               0.000                           

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_slope          -4.638    0.214  -21.714    0.000
    l_intercept      11.437    0.116   98.207    0.000
   .ly1               0.000                           
   .ly2               0.000                           
   .ly3               0.000                           
   .ly4               0.000                           
   .ly5               0.000                           
   .ly6               0.000                           
   .cy2               0.000                           
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
   .y.1               0.000                           
   .y.2               0.000                           
   .y.3               0.000                           
   .y.4               0.000                           
   .y.5               0.000                           
   .y.6               0.000                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_ntrcp           6.704    0.496   13.517    0.000
    l_slope           1.953    0.144   13.533    0.000
   .ly1               0.000                           
   .ly2               0.000                           
   .ly3               0.000                           
   .ly4               0.000                           
   .ly5               0.000                           
   .ly6               0.000                           
   .cy2               0.000                           
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
   .y.1     (rs_v)    6.341    0.169   37.417    0.000
   .y.2     (rs_v)    6.341    0.169   37.417    0.000
   .y.3     (rs_v)    6.341    0.169   37.417    0.000
   .y.4     (rs_v)    6.341    0.169   37.417    0.000
   .y.5     (rs_v)    6.341    0.169   37.417    0.000
   .y.6     (rs_v)    6.341    0.169   37.417    0.000

Code to change the \(y\)’s in the string to \(x\)’s without manually deleting and inserting \(x\) into the string above. All you have to do is paste the string into a .txt document and save the file as “y_file.txt”

library(readr)

mystring <- read_file('y_file.txt')
new_data <- gsub('y', 'x', mystring)
# write_file(new_data, path = 'x_file.txt') # not executed but will work

Dual Change Model on X

df_wide_x <- df %>%
  select(id, time, x) %>%
  reshape(idvar = 'id', timevar = 'time', direction = 'wide')


library(lavaan)

dual_change_x_string <- [1672 chars quoted with ''']

dc_x_model <- sem(dual_change_x_string, data = df_wide_x)
summary(dc_x_model, fit.measures = T)
lavaan 0.6-9 ended normally after 72 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        16
  Number of equality constraints                     9
                                                      
  Number of observations                           700
                                                      
Model Test User Model:
                                                      
  Test statistic                              4093.422
  Degrees of freedom                                20
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             11625.807
  Degrees of freedom                                15
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.649
  Tucker-Lewis Index (TLI)                       0.737

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -10086.040
  Loglikelihood unrestricted model (H1)      -8039.329
                                                      
  Akaike (AIC)                               20186.080
  Bayesian (BIC)                             20217.937
  Sample-size adjusted Bayesian (BIC)        20195.711

Root Mean Square Error of Approximation:

  RMSEA                                          0.539
  90 Percent confidence interval - lower         0.526
  90 Percent confidence interval - upper         0.553
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.806

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  lx1 =~                                              
    x.1               1.000                           
  lx2 =~                                              
    x.2               1.000                           
  lx3 =~                                              
    x.3               1.000                           
  lx4 =~                                              
    x.4               1.000                           
  lx5 =~                                              
    x.5               1.000                           
  lx6 =~                                              
    x.6               1.000                           
  cx2 =~                                              
    lx2               1.000                           
  cx3 =~                                              
    lx3               1.000                           
  cx4 =~                                              
    lx4               1.000                           
  cx5 =~                                              
    lx5               1.000                           
  cx6 =~                                              
    lx6               1.000                           
  l_intercept =~                                      
    lx1               1.000                           
  l_slope =~                                          
    cx2               1.000                           
    cx3               1.000                           
    cx4               1.000                           
    cx5               1.000                           
    cx6               1.000                           

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  lx2 ~                                               
    lx1               1.000                           
  lx3 ~                                               
    lx2               1.000                           
  lx4 ~                                               
    lx3               1.000                           
  lx5 ~                                               
    lx4               1.000                           
  lx6 ~                                               
    lx5               1.000                           
  cx2 ~                                               
    lx1     (prop)    0.145    0.004   34.642    0.000
  cx3 ~                                               
    lx2     (prop)    0.145    0.004   34.642    0.000
  cx4 ~                                               
    lx3     (prop)    0.145    0.004   34.642    0.000
  cx5 ~                                               
    lx4     (prop)    0.145    0.004   34.642    0.000
  cx6 ~                                               
    lx5     (prop)    0.145    0.004   34.642    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  l_intercept ~~                                      
    l_slope          -1.043    0.250   -4.177    0.000
 .cx2 ~~                                              
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
 .cx3 ~~                                              
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
 .cx4 ~~                                              
   .cx5               0.000                           
   .cx6               0.000                           
 .cx5 ~~                                              
   .cx6               0.000                           

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_slope          -3.559    0.123  -29.026    0.000
    l_intercept      10.347    0.075  138.246    0.000
   .lx1               0.000                           
   .lx2               0.000                           
   .lx3               0.000                           
   .lx4               0.000                           
   .lx5               0.000                           
   .lx6               0.000                           
   .cx2               0.000                           
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
   .x.1               0.000                           
   .x.2               0.000                           
   .x.3               0.000                           
   .x.4               0.000                           
   .x.5               0.000                           
   .x.6               0.000                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_ntrcp           2.752    0.201   13.690    0.000
    l_slope           9.980    0.570   17.502    0.000
   .lx1               0.000                           
   .lx2               0.000                           
   .lx3               0.000                           
   .lx4               0.000                           
   .lx5               0.000                           
   .lx6               0.000                           
   .cx2               0.000                           
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
   .x.1     (rs_v)    2.105    0.056   37.417    0.000
   .x.2     (rs_v)    2.105    0.056   37.417    0.000
   .x.3     (rs_v)    2.105    0.056   37.417    0.000
   .x.4     (rs_v)    2.105    0.056   37.417    0.000
   .x.5     (rs_v)    2.105    0.056   37.417    0.000
   .x.6     (rs_v)    2.105    0.056   37.417    0.000

Bivariate Dual Change Model

bi_dc_string <- [3578 chars quoted with ''']

df_both <- df %>%
  reshape(idvar = 'id', timevar = 'time', direction = 'wide')

bi_dc_model <- sem(bi_dc_string, data = df_both)
summary(bi_dc_model, fit.measures = T)
lavaan 0.6-9 ended normally after 115 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        46
  Number of equality constraints                    26
                                                      
  Number of observations                           700
                                                      
Model Test User Model:
                                                      
  Test statistic                              1593.425
  Degrees of freedom                                70
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             23686.764
  Degrees of freedom                                66
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.936
  Tucker-Lewis Index (TLI)                       0.939

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -15278.191
  Loglikelihood unrestricted model (H1)     -14481.478
                                                      
  Akaike (AIC)                               30596.382
  Bayesian (BIC)                             30687.404
  Sample-size adjusted Bayesian (BIC)        30623.900

Root Mean Square Error of Approximation:

  RMSEA                                          0.176
  90 Percent confidence interval - lower         0.169
  90 Percent confidence interval - upper         0.184
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.097

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)
  ly1 =~                                              
    y.1               1.000                           
  ly2 =~                                              
    y.2               1.000                           
  ly3 =~                                              
    y.3               1.000                           
  ly4 =~                                              
    y.4               1.000                           
  ly5 =~                                              
    y.5               1.000                           
  ly6 =~                                              
    y.6               1.000                           
  cy2 =~                                              
    ly2               1.000                           
  cy3 =~                                              
    ly3               1.000                           
  cy4 =~                                              
    ly4               1.000                           
  cy5 =~                                              
    ly5               1.000                           
  cy6 =~                                              
    ly6               1.000                           
  l_intercept =~                                      
    ly1               1.000                           
  l_slope =~                                          
    cy2               1.000                           
    cy3               1.000                           
    cy4               1.000                           
    cy5               1.000                           
    cy6               1.000                           
  lx1 =~                                              
    x.1               1.000                           
  lx2 =~                                              
    x.2               1.000                           
  lx3 =~                                              
    x.3               1.000                           
  lx4 =~                                              
    x.4               1.000                           
  lx5 =~                                              
    x.5               1.000                           
  lx6 =~                                              
    x.6               1.000                           
  cx2 =~                                              
    lx2               1.000                           
  cx3 =~                                              
    lx3               1.000                           
  cx4 =~                                              
    lx4               1.000                           
  cx5 =~                                              
    lx5               1.000                           
  cx6 =~                                              
    lx6               1.000                           
  lx_intercept =~                                     
    lx1               1.000                           
  lx_slope =~                                         
    cx2               1.000                           
    cx3               1.000                           
    cx4               1.000                           
    cx5               1.000                           
    cx6               1.000                           

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)
  ly2 ~                                               
    ly1               1.000                           
  ly3 ~                                               
    ly2               1.000                           
  ly4 ~                                               
    ly3               1.000                           
  ly5 ~                                               
    ly4               1.000                           
  ly6 ~                                               
    ly5               1.000                           
  cy2 ~                                               
    ly1     (prop)   -0.315    0.004  -71.219    0.000
  cy3 ~                                               
    ly2     (prop)   -0.315    0.004  -71.219    0.000
  cy4 ~                                               
    ly3     (prop)   -0.315    0.004  -71.219    0.000
  cy5 ~                                               
    ly4     (prop)   -0.315    0.004  -71.219    0.000
  cy6 ~                                               
    ly5     (prop)   -0.315    0.004  -71.219    0.000
  lx2 ~                                               
    lx1               1.000                           
  lx3 ~                                               
    lx2               1.000                           
  lx4 ~                                               
    lx3               1.000                           
  lx5 ~                                               
    lx4               1.000                           
  lx6 ~                                               
    lx5               1.000                           
  cx2 ~                                               
    lx1     (prpx)    0.222    0.002   97.772    0.000
  cx3 ~                                               
    lx2     (prpx)    0.222    0.002   97.772    0.000
  cx4 ~                                               
    lx3     (prpx)    0.222    0.002   97.772    0.000
  cx5 ~                                               
    lx4     (prpx)    0.222    0.002   97.772    0.000
  cx6 ~                                               
    lx5     (prpx)    0.222    0.002   97.772    0.000
  cy2 ~                                               
    lx1       (xy)    0.405    0.002  184.920    0.000
  cy3 ~                                               
    lx2       (xy)    0.405    0.002  184.920    0.000
  cy4 ~                                               
    lx3       (xy)    0.405    0.002  184.920    0.000
  cy5 ~                                               
    lx4       (xy)    0.405    0.002  184.920    0.000
  cy6 ~                                               
    lx5       (xy)    0.405    0.002  184.920    0.000
  cx2 ~                                               
    ly1       (yx)   -0.433    0.005  -93.914    0.000
  cx3 ~                                               
    ly2       (yx)   -0.433    0.005  -93.914    0.000
  cx4 ~                                               
    ly3       (yx)   -0.433    0.005  -93.914    0.000
  cx5 ~                                               
    ly4       (yx)   -0.433    0.005  -93.914    0.000
  cx6 ~                                               
    ly5       (yx)   -0.433    0.005  -93.914    0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)
  l_intercept ~~                                      
    l_slope           0.392    0.141    2.786    0.005
 .cy2 ~~                                              
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
 .cy3 ~~                                              
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
 .cy4 ~~                                              
   .cy5               0.000                           
   .cy6               0.000                           
 .cy5 ~~                                              
   .cy6               0.000                           
  lx_intercept ~~                                     
    lx_slope          0.015    0.125    0.123    0.902
 .cx2 ~~                                              
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
 .cx3 ~~                                              
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
 .cx4 ~~                                              
   .cx5               0.000                           
   .cx6               0.000                           
 .cx5 ~~                                              
   .cx6               0.000                           
  l_intercept ~~                                      
    lx_intercept     -0.154    0.050   -3.095    0.002
    lx_slope          0.028    0.136    0.207    0.836
  l_slope ~~                                          
    lx_intercept     -0.206    0.131   -1.578    0.115
    lx_slope          0.098    0.333    0.293    0.770

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_slope           0.214    0.119    1.790    0.073
    l_intercept      10.004    0.046  218.589    0.000
   .ly1               0.000                           
   .ly2               0.000                           
   .ly3               0.000                           
   .ly4               0.000                           
   .ly5               0.000                           
   .ly6               0.000                           
   .cy2               0.000                           
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
   .y.1               0.000                           
   .y.2               0.000                           
   .y.3               0.000                           
   .y.4               0.000                           
   .y.5               0.000                           
   .y.6               0.000                           
    lx_slope          0.550    0.118    4.644    0.000
    lx_intercept     10.074    0.043  236.997    0.000
   .lx1               0.000                           
   .lx2               0.000                           
   .lx3               0.000                           
   .lx4               0.000                           
   .lx5               0.000                           
   .lx6               0.000                           
   .cx2               0.000                           
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
   .x.1               0.000                           
   .x.2               0.000                           
   .x.3               0.000                           
   .x.4               0.000                           
   .x.5               0.000                           
   .x.6               0.000                           

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)
    l_ntr             0.990    0.076   13.059    0.000
    l_slp             8.651    0.481   17.991    0.000
   .ly1               0.000                           
   .ly2               0.000                           
   .ly3               0.000                           
   .ly4               0.000                           
   .ly5               0.000                           
   .ly6               0.000                           
   .cy2               0.000                           
   .cy3               0.000                           
   .cy4               0.000                           
   .cy5               0.000                           
   .cy6               0.000                           
   .y.1   (res_vr)    0.738    0.020   37.356    0.000
   .y.2   (res_vr)    0.738    0.020   37.356    0.000
   .y.3   (res_vr)    0.738    0.020   37.356    0.000
   .y.4   (res_vr)    0.738    0.020   37.356    0.000
   .y.5   (res_vr)    0.738    0.020   37.356    0.000
   .y.6   (res_vr)    0.738    0.020   37.356    0.000
    lx_nt             1.028    0.065   15.705    0.000
    lx_sl             8.406    0.459   18.296    0.000
   .lx1               0.000                           
   .lx2               0.000                           
   .lx3               0.000                           
   .lx4               0.000                           
   .lx5               0.000                           
   .lx6               0.000                           
   .cx2               0.000                           
   .cx3               0.000                           
   .cx4               0.000                           
   .cx5               0.000                           
   .cx6               0.000                           
   .x.1   (rs_vrx)    0.438    0.012   36.455    0.000
   .x.2   (rs_vrx)    0.438    0.012   36.455    0.000
   .x.3   (rs_vrx)    0.438    0.012   36.455    0.000
   .x.4   (rs_vrx)    0.438    0.012   36.455    0.000
   .x.5   (rs_vrx)    0.438    0.012   36.455    0.000
   .x.6   (rs_vrx)    0.438    0.012   36.455    0.000

Bo\(^2\)m =)